BOOK CHAPTER
[1] Leping Yang, Yuchi Wan, Ruitao Lv*. Tailoring defects in 2D materials for electrocatalysis (Chapter 10 of the Book: "Defects in Two-Dimensional Materials"), 2022 Elsevier.
[2] Ruitao Lv*. Solar Energy Applications (Chapter 8 of the Book: "Carbon-based Nanomaterials for Energy Storage"), 2020 Science Press.
[3] Simin Feng, Ruitao Lv, Mauricio Terrones, Maria Cristina dos Santos*. Interactions of Molecular Species with Graphene and Graphene Sensing (Chapter 17 of the Book: "Handbook of Graphene" Volume 6, (507–532)), 2019 Scrivener Publishing LLC.
[4] Florentino Lopez-Urias, Ruitao Lv, Humberto Terrones, Mauricio Terrones*. Doped graphene: theory, synthesis, characterization and applications (Chapter 9 of the Book: "Graphene Chemistry: Theoretical Perspectives"), 2013, Wiley.
SELECTED PEER-REVIEWED JOURNAL PUBLICATIONS
[1] C. Wang, B. Li, W. Shen, F. Kang, Z.-H. Huang*, R. Lv*. Unveiling the effects of Cr single atoms with controllable configurations on solid electrolyte interphase and storage mechanism of sodium ions. Advanced Functional Materials 2023: DOI: 10.1002/adfm.202214429.
[2] L. Zhou, Z.-H. Huang, F. Kang, R. Lv*. Bimetallic substrate induction synthesis of binder-free electrocatalysts for stable seawater oxidation at industrial current densities. Chemical Engineering Journal 2023, 458: 141457.
[3] Y. Wan, Z. Wang, M. Zheng, J. Li*, R. Lv*. Heterogeneous crystalline-amorphous interface for boosted electrocatalytic nitrogen reduction to ammonia. Journal of Materials Chemistry A 2023, 11: 818-827.
[4] Y. Wan, M. Zheng, R. Lv*. Rational design of Mo2C nanosheets anchored on hierarchically porous carbon for boosting electrocatalytic N2 reduction to NH3. Materials Today Energy 2023, 32: 101240.
[5] Y. Zhang, Q. Lv, H. Wang*, S. Zhao, Q. Xiong, R. Lv*, X. Zhang*. Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction. Science 2022, 378: 169-175.
[6] S. Zhang, X. Deng, Y. Wu, Y. Wang, S. Ke, S. Zhang, K. Liu, R. Lv, Z. Li*, Q. Xiong*, C. Wang*. Lateral layered semiconductor multijunctions for novel electronic devices. Chemical Society Reviews 2022, 51: 4000-4022.
[7] L. Zhou, R. Lv*. Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols. Journal of Energy Chemistry 2022, 70: 310-331.
[8] L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou, R. Lv*. Atomic Fe-N4/C in Flexible Carbon Fiber Membrane as Binder-Free Air Cathode for Zn-Air Batteries with Stable Cycling over 1000 h. Advanced Materials 2022, 34: 2105410.
[9] Y. Wan, Z. Wang, J. Li*, R. Lv*. Mo2C-MoO2 Heterostructure Quantum Dots for Enhanced Electrocatalytic Nitrogen Reduction to Ammonia. ACS Nano 2022, 16: 643-654.
[10] Q. Lv, J. Tan, Z. Wang, L. Yu, B. Liu, J. Lin, J. Li, Z.-H. Huang, F. Kang, R. Lv*. Femtomolar-level molecular sensing of monolayer tungsten diselenide induced by heteroatom doping with long-term stability. Advanced Functional Materials 2022, 32: 2200273.
[11] C. Wang, N. Zhao, B. Li, Q. Yu, W. Shen, F. Kang, R. Lv*, Z.-H. Huang*. Pseudocapacitive porous hard carbon anode with controllable pyridinic nitrogen and thiophene sulfur co-doping for high-power dual-carbon sodium ion hybrid capacitors. Journal of Materials Chemistry A 2021, 9: 20483-20492.
[12] Y. Wan, H. Zhou, M. Zheng, Z.-H. Huang, F. Kang, J. Li*, R. Lv*. Oxidation State Modulation of Bismuth for Efficient Electrocatalytic Nitrogen Reduction to Ammonia. Advanced Functional Materials 2021, 31: 2100300.
[13] H. Ren, L. Yu, L. Yang, Z.-H. Huang*, F. Kang*, R. Lv*. Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition. Journal of Energy Chemistry 2021, 60: 194-201.
[14] Q. Lv, X. Wu, J. Tan, B. Liu, L. Gan, J. Li*, Z.-H. Huang, F. Kang, R. Lv*. Ultrasensitive molecular sensing of few-layer niobium diselenide. Journal of Materials Chemistry A 2021, 9: 2725.
[15] M. Fu, R. Lv*, Y. Lei*, M. Terrones*. Ultralight Flexible Electrodes of Nitrogen-Doped Carbon Macrotube Sponges for High-Performance Supercapacitors. Small 2021, 17: 2004827.
[16] H. Zhang, M. Hu, Q. Lv, Z.-H. Huang, F. Kang, R. Lv*. Advanced Materials for Sodium-Ion Capacitors with Superior Energy-Power Properties: Progress and Perspectives. Small 2020, 16: 1902843.
[17] L. Yang, X. Yang, L. Yu, R. Lv*. Defect Engineering of van der Waals Solids for Electrocatalytic Hydrogen Evolution. Chemistry-an Asian Journal 2020, 15: 3682-3695.
[18] L. Yang, M. Hu, Q. Lv, H. Zhang, W. Yang*, R. Lv*. Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity. Carbon 2020, 163: 288-296.
[19] M. Hu, Z. Liu, H. Zhang, Z.-H. Huang, F. Kang, R. Lv*. Defect engineering of vanadium pentoxide for efficient lithium-ion storage. Electrochimica Acta 2020, 333: 135513.
[20] M. Hu, Z. Ju, Z. Bai, K. Yu, Z. Fang, R. Lv*, G. Yu*. Revealing the Critical Factor in Metal Sulfide Anode Performance in Sodium-Ion Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods 2020, 4: 1900673.
[21] H. Zhang, M. Hu, Q. Lv, L. Yang, R. Lv*. Monodisperse nitrogen-doped carbon spheres with superior rate capacities for lithium/sodium ion storage. Electrochimica Acta 2019, 297: 365-371.
[22] Y. Wan, J. Xu, R. Lv*. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today 2019, 27: 69-90. (Times cited: 180)
[23] J. Lu, S. Zhao, S. Fan, Q. Lv, J. Li*, R. Lv*. Hierarchical SnS/SnS2 heterostructures grown on carbon cloth as binder-free anode for superior sodium-ion storage. Carbon 2019, 148: 525-531.
[24] M. Hu, H. Zhang, L. Yang, R. Lv*. Ultrahigh rate sodium-ion storage of SnS/SnS2 heterostructures anchored on S-doped reduced graphene oxide by ion-assisted growth. Carbon 2019, 143: 21-29.
[25] C. Zhou, J. Lu, M. Hu, Z.-H. Huang, F. Kang, R. Lv*. High Areal Capacity Li-Ion Storage of Binder-Free Metal Vanadate/Carbon Hybrid Anode by Ion-Exchange Reaction. Small 2018, 14: 1801832.
[26] Z. Zhang, Y. Wang, X. Leng, V.H. Crespi*, F. Kang*, R. Lv*. Controllable Edge Exposure of MoS2 for Efficient Hydrogen Evolution with High Current Density. ACS Applied Energy Materials 2018, 1: 1268-1275.
[27] H. Zhang, R. Lv*. Defect engineering of two-dimensional materials for efficient electrocatalysis. Journal of Materiomics 2018, 4: 95-107.
[28] L. Yang, W. Wang, M. Hu, J. Shao*, R. Lv*. Ultrahigh rate binder-free Na3V2(PO4)3/carbon cathode for sodium-ion battery. Journal of Energy Chemistry 2018, 27: 1439-1445.
[29] M. Hu, H. Zhou, X. Gan, L. Yang, Z.-H. Huang, D.-W. Wang, F. Kang, R. Lv*. Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte. Journal of Materials Chemistry A 2018, 6: 1582-1589.
[30] C. Zhou, S. Fan, M. Hu, J. Lu, J. Li, Z.-H. Huang, F. Kang, R. Lv*. High areal specific capacity of Ni3V2O8/carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries. Journal of Materials Chemistry A 2017, 5: 15517-15524.
[31] F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li*, F. Kang, M. Terrones*, R. Lv*. Ultrasensitive Pressure Detection of Few-Layer MoS2. Advanced Materials 2017, 29: 1603266.
[32] X. Wang, X. Gan, T. Hu, K. Fujisawa, Y. Lei, Z. Lin, B. Xu, Z.-H. Huang, F. Kang, M. Terrones*, R. Lv*. Noble-Metal-Free Hybrid Membranes for Highly Efficient Hydrogen Evolution. Advanced Materials 2017, 29: 1603617.
[33] H. Ren, Z.-H. Huang*, Z. Yang, S. Tang, F. Kang, R. Lv*. Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting. Journal of Energy Chemistry 2017, 26: 1217-1222.
[34] M. Hu, L. Yang, K. Zhou, C. Zhou, Z.-H. Huang, F. Kang, R. Lv*. Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon 2017, 122: 680-686.
[35] R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, M. Terrones*. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research 2015, 48: 56-64. (Times cited: 912)
[36] R. Lv, G. Chen, Q. Li, A. Mccreary, A. Botello-Mendez, S.V. Morozov, L. Liang, X. Declerck, N. Perea-Lopez, D.A. Culleni, S. Feng, A.L. Elias, R. Cruz-Silva, K. Fujisawa, M. Endo, F. Kang, J.-C. Charlier, V. Meunier, M. Pan, A.R. Harutyunyan, K.S. Novoselov, M. Terrones*. Ultrasensitive gas detection of large-area boron-doped graphene. PNAS 2015, 112: 14527-14532.
[37] R. Lv*, M.C. Dos Santos, C. Antonelli, S. Feng, K. Fujisawa, A. Berkdemir, R. Cruz-Silva, A.L. Elias, N. Perea-Lopez, F. Lopez-Urias, H. Terrones, M. Terrones*. Large-Area Si-Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing. Advanced Materials 2014, 26: 7593-7599.
[38] R. Lv, E. Cruz-Silva, M. Terrones*. Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene-Nanotube Hybrids and More. ACS Nano 2014, 8: 4061-4069.
[39] N.I. Kovtyukhova*, Y. Wang, R. Lv, M. Terrones, V.H. Crespi*, T.E. Mallouk*. Reversible Intercalation of Hexagonal Boron Nitride with Bronsted Acids. Journal of the American Chemical Society 2013, 135: 8372-8381.
[40] R. Lv, Q. Li, A.R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elias, R. Cruz-Silva, H.R. Gutierrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.-C. Charlier*, M. Pan*, M. Terrones*. Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports 2012, 2: 586. (Times cited: 541)
[41] R. Lv, T. Cui, M.-S. Jun, Q. Zhang, A. Cao*, D.S. Su, Z. Zhang, S.-H. Yoon, J. Miyawaki, I. Mochida, F. Kang*. Open-Ended, N-Doped Carbon Nanotube-Graphene Hybrid Nanostructures as High-Performance Catalyst Support. Advanced Functional Materials 2011, 21: 999-1006. (Times cited: 341)