Faculty
Location: Home > Faculty&Staff > Faculty
LV Ruitao

Associate Professor (PI), PhD   
Director of Experimental Teaching Center,
School of Materials Science and Engineering,
Tsinghua University, Beijing, 100084, China

Tel:+86-10-6278-1284
E-mail:lvruitao@tsinghua.edu.cn

expand>>
EDUCATION BACKGROUND

2004/09-2009/01 Ph.D. in Materials Science and Engineering, Tsinghua University

2001/09-2004/03 M. S. in Applied Chemistry, Beijing Institute of Technology

1997/09-2001/07 Undergraduate in Chemical Engineering and Technology, Shandong Polytechnic University


EXPERIENCE

2019/12-Present  Associate Professor (Tenured),School of Materials Science and Engineering,Tsinghua University,China

2013/02-2019/12  Assistant Professor, School of Materials Science and Engineering, Tsinghua University, China

2011/01-2013/01  Postdoctoral Fellow, Department of Physics, Pennsylvania State University, USA

2009/11-2010/08  Visiting Researcher, Institute for Materials Chemistry and Engineering, Kyushu University, Japan

2009/01-2011/01  Postdoctoral Fellow, Department of Materials Science and Engineering, Tsinghua University, China


AREAS OF RESEARCH INTERESTS/ RESEARCH PROJECTS

The research of Dr. Ruitao Lv is mainly focused on the defect engineering of carbon-based low-dimensional materials, especially the controllable construction and atomic visualization of lattice defects (doping atoms, vacancies, interfaces, etc.), and the applications in energy conversion/storage, molecular detection and high-performance catalysis. He authored more than 170 peer-reviewed papers in Science, PNAS, Adv. Mater., Adv. Funct. Mater. and other high-profile journals. He served as the Associate Editor of Carbon Letters (Springer Nature), Youth Editor of SmartMat (Wiley); Editorial Board member of Materials, ES Energy and Environment, etc.


HONORS AND AWARDS

2022  First-class Award for Science and Technology, Materials Research Society of China

2022  Excellent PhD thesis Advisor Award of Tsinghua University

2021  First-class Teaching Achievement Award of Tsinghua University

2019  First-class Award for Natural Science, Ministry of Education, China

2018  Distinguished Teaching Award of Tsinghua University

2017  Brian Kelly Award of British Carbon Group

2017  National Natural Science Fund of China for Excellent Young Scholars

2016  Beijing Nova Program (one of the Top 2 winners in Tsinghua)

2014  Distinguished Young Scholar of Tsinghua University (one of the Top 10 winners in Tsinghua)

2010  Elsevier Carbon Journal Prize

2009  Excellent Paper Award of C-MRS


ACADEMIC ACHIEVEMENTS

BOOK CHAPTER

[1] Leping Yang, Yuchi Wan, Ruitao Lv*. Tailoring defects in 2D materials for electrocatalysis (Chapter 10 of the Book: "Defects in Two-Dimensional Materials"), 2022 Elsevier.

[2] Ruitao Lv*. Solar Energy Applications (Chapter 8 of the Book: "Carbon-based Nanomaterials for Energy Storage"), 2020 Science Press.

[3] Simin Feng, Ruitao Lv, Mauricio Terrones, Maria Cristina dos Santos*. Interactions of Molecular Species with Graphene and Graphene Sensing (Chapter 17 of the Book: "Handbook of Graphene" Volume 6, (507–532)), 2019 Scrivener Publishing LLC.

[4] Florentino Lopez-Urias, Ruitao Lv, Humberto Terrones, Mauricio Terrones*. Doped graphene: theory, synthesis, characterization and applications (Chapter 9 of the Book: "Graphene Chemistry: Theoretical Perspectives"), 2013, Wiley.


SELECTED PEER-REVIEWED JOURNAL PUBLICATIONS

[1] C. Wang, B. Li, W. Shen, F. Kang, Z.-H. Huang*, R. Lv*. Unveiling the effects of Cr single atoms with controllable configurations on solid electrolyte interphase and storage mechanism of sodium ions. Advanced Functional Materials 2023: DOI: 10.1002/adfm.202214429.

[2] L. Zhou, Z.-H. Huang, F. Kang, R. Lv*. Bimetallic substrate induction synthesis of binder-free electrocatalysts for stable seawater oxidation at industrial current densities. Chemical Engineering Journal 2023, 458: 141457.

[3] Y. Wan, Z. Wang, M. Zheng, J. Li*, R. Lv*. Heterogeneous crystalline-amorphous interface for boosted electrocatalytic nitrogen reduction to ammonia. Journal of Materials Chemistry A 2023, 11: 818-827.

[4] Y. Wan, M. Zheng, R. Lv*. Rational design of Mo2C nanosheets anchored on hierarchically porous carbon for boosting electrocatalytic N2 reduction to NH3. Materials Today Energy 2023, 32: 101240.

[5] Y. Zhang, Q. Lv, H. Wang*, S. Zhao, Q. Xiong, R. Lv*, X. Zhang*. Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction. Science 2022, 378: 169-175.

[6] S. Zhang, X. Deng, Y. Wu, Y. Wang, S. Ke, S. Zhang, K. Liu, R. Lv, Z. Li*, Q. Xiong*, C. Wang*. Lateral layered semiconductor multijunctions for novel electronic devices. Chemical Society Reviews 2022, 51: 4000-4022.

[7] L. Zhou, R. Lv*. Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols. Journal of Energy Chemistry 2022, 70: 310-331.

[8] L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou, R. Lv*. Atomic Fe-N4/C in Flexible Carbon Fiber Membrane as Binder-Free Air Cathode for Zn-Air Batteries with Stable Cycling over 1000 h. Advanced Materials 2022, 34: 2105410.

[9] Y. Wan, Z. Wang, J. Li*, R. Lv*. Mo2C-MoO2 Heterostructure Quantum Dots for Enhanced Electrocatalytic Nitrogen Reduction to Ammonia. ACS Nano 2022, 16: 643-654.

[10] Q. Lv, J. Tan, Z. Wang, L. Yu, B. Liu, J. Lin, J. Li, Z.-H. Huang, F. Kang, R. Lv*. Femtomolar-level molecular sensing of monolayer tungsten diselenide induced by heteroatom doping with long-term stability. Advanced Functional Materials 2022, 32: 2200273.

[11] C. Wang, N. Zhao, B. Li, Q. Yu, W. Shen, F. Kang, R. Lv*, Z.-H. Huang*. Pseudocapacitive porous hard carbon anode with controllable pyridinic nitrogen and thiophene sulfur co-doping for high-power dual-carbon sodium ion hybrid capacitors. Journal of Materials Chemistry A 2021, 9: 20483-20492.

[12] Y. Wan, H. Zhou, M. Zheng, Z.-H. Huang, F. Kang, J. Li*, R. Lv*. Oxidation State Modulation of Bismuth for Efficient Electrocatalytic Nitrogen Reduction to Ammonia. Advanced Functional Materials 2021, 31: 2100300.

[13] H. Ren, L. Yu, L. Yang, Z.-H. Huang*, F. Kang*, R. Lv*. Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition. Journal of Energy Chemistry 2021, 60: 194-201.

[14] Q. Lv, X. Wu, J. Tan, B. Liu, L. Gan, J. Li*, Z.-H. Huang, F. Kang, R. Lv*. Ultrasensitive molecular sensing of few-layer niobium diselenide. Journal of Materials Chemistry A 2021, 9: 2725.

[15] M. Fu, R. Lv*, Y. Lei*, M. Terrones*. Ultralight Flexible Electrodes of Nitrogen-Doped Carbon Macrotube Sponges for High-Performance Supercapacitors. Small 2021, 17: 2004827.

[16] H. Zhang, M. Hu, Q. Lv, Z.-H. Huang, F. Kang, R. Lv*. Advanced Materials for Sodium-Ion Capacitors with Superior Energy-Power Properties: Progress and Perspectives. Small 2020, 16: 1902843.

[17] L. Yang, X. Yang, L. Yu, R. Lv*. Defect Engineering of van der Waals Solids for Electrocatalytic Hydrogen Evolution. Chemistry-an Asian Journal 2020, 15: 3682-3695.

[18] L. Yang, M. Hu, Q. Lv, H. Zhang, W. Yang*, R. Lv*. Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity. Carbon 2020, 163: 288-296.

[19] M. Hu, Z. Liu, H. Zhang, Z.-H. Huang, F. Kang, R. Lv*. Defect engineering of vanadium pentoxide for efficient lithium-ion storage. Electrochimica Acta 2020, 333: 135513.

[20] M. Hu, Z. Ju, Z. Bai, K. Yu, Z. Fang, R. Lv*, G. Yu*. Revealing the Critical Factor in Metal Sulfide Anode Performance in Sodium-Ion Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods 2020, 4: 1900673.

[21] H. Zhang, M. Hu, Q. Lv, L. Yang, R. Lv*. Monodisperse nitrogen-doped carbon spheres with superior rate capacities for lithium/sodium ion storage. Electrochimica Acta 2019, 297: 365-371.

[22] Y. Wan, J. Xu, R. Lv*. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today 2019, 27: 69-90. (Times cited: 180)

[23] J. Lu, S. Zhao, S. Fan, Q. Lv, J. Li*, R. Lv*. Hierarchical SnS/SnS2 heterostructures grown on carbon cloth as binder-free anode for superior sodium-ion storage. Carbon 2019, 148: 525-531.

[24] M. Hu, H. Zhang, L. Yang, R. Lv*. Ultrahigh rate sodium-ion storage of SnS/SnS2 heterostructures anchored on S-doped reduced graphene oxide by ion-assisted growth. Carbon 2019, 143: 21-29.

[25] C. Zhou, J. Lu, M. Hu, Z.-H. Huang, F. Kang, R. Lv*. High Areal Capacity Li-Ion Storage of Binder-Free Metal Vanadate/Carbon Hybrid Anode by Ion-Exchange Reaction. Small 2018, 14: 1801832.

[26] Z. Zhang, Y. Wang, X. Leng, V.H. Crespi*, F. Kang*, R. Lv*. Controllable Edge Exposure of MoS2 for Efficient Hydrogen Evolution with High Current Density. ACS Applied Energy Materials 2018, 1: 1268-1275.

[27] H. Zhang, R. Lv*. Defect engineering of two-dimensional materials for efficient electrocatalysis. Journal of Materiomics 2018, 4: 95-107.

[28] L. Yang, W. Wang, M. Hu, J. Shao*, R. Lv*. Ultrahigh rate binder-free Na3V2(PO4)3/carbon cathode for sodium-ion battery. Journal of Energy Chemistry 2018, 27: 1439-1445.

[29] M. Hu, H. Zhou, X. Gan, L. Yang, Z.-H. Huang, D.-W. Wang, F. Kang, R. Lv*. Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte. Journal of Materials Chemistry A 2018, 6: 1582-1589.

[30] C. Zhou, S. Fan, M. Hu, J. Lu, J. Li, Z.-H. Huang, F. Kang, R. Lv*. High areal specific capacity of Ni3V2O8/carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries. Journal of Materials Chemistry A 2017, 5: 15517-15524.

[31] F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li*, F. Kang, M. Terrones*, R. Lv*. Ultrasensitive Pressure Detection of Few-Layer MoS2. Advanced Materials 2017, 29: 1603266.

[32] X. Wang, X. Gan, T. Hu, K. Fujisawa, Y. Lei, Z. Lin, B. Xu, Z.-H. Huang, F. Kang, M. Terrones*, R. Lv*. Noble-Metal-Free Hybrid Membranes for Highly Efficient Hydrogen Evolution. Advanced Materials 2017, 29: 1603617.

[33] H. Ren, Z.-H. Huang*, Z. Yang, S. Tang, F. Kang, R. Lv*. Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting. Journal of Energy Chemistry 2017, 26: 1217-1222.

[34] M. Hu, L. Yang, K. Zhou, C. Zhou, Z.-H. Huang, F. Kang, R. Lv*. Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon 2017, 122: 680-686.

[35] R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, M. Terrones*. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research 2015, 48: 56-64. (Times cited: 912)

[36] R. Lv, G. Chen, Q. Li, A. Mccreary, A. Botello-Mendez, S.V. Morozov, L. Liang, X. Declerck, N. Perea-Lopez, D.A. Culleni, S. Feng, A.L. Elias, R. Cruz-Silva, K. Fujisawa, M. Endo, F. Kang, J.-C. Charlier, V. Meunier, M. Pan, A.R. Harutyunyan, K.S. Novoselov, M. Terrones*. Ultrasensitive gas detection of large-area boron-doped graphene. PNAS 2015, 112: 14527-14532.

[37] R. Lv*, M.C. Dos Santos, C. Antonelli, S. Feng, K. Fujisawa, A. Berkdemir, R. Cruz-Silva, A.L. Elias, N. Perea-Lopez, F. Lopez-Urias, H. Terrones, M. Terrones*. Large-Area Si-Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing. Advanced Materials 2014, 26: 7593-7599.

[38] R. Lv, E. Cruz-Silva, M. Terrones*. Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene-Nanotube Hybrids and More. ACS Nano 2014, 8: 4061-4069.

[39] N.I. Kovtyukhova*, Y. Wang, R. Lv, M. Terrones, V.H. Crespi*, T.E. Mallouk*. Reversible Intercalation of Hexagonal Boron Nitride with Bronsted Acids. Journal of the American Chemical Society 2013, 135: 8372-8381.

[40] R. Lv, Q. Li, A.R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elias, R. Cruz-Silva, H.R. Gutierrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.-C. Charlier*, M. Pan*, M. Terrones*. Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports 2012, 2: 586. (Times cited: 541)

[41] R. Lv, T. Cui, M.-S. Jun, Q. Zhang, A. Cao*, D.S. Su, Z. Zhang, S.-H. Yoon, J. Miyawaki, I. Mochida, F. Kang*. Open-Ended, N-Doped Carbon Nanotube-Graphene Hybrid Nanostructures as High-Performance Catalyst Support. Advanced Functional Materials 2011, 21: 999-1006. (Times cited: 341)



Copyright © 2020 School of Materials Science and Engineering, Tsinghua University All Rights Reserved.